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Abstract. The LHC experiments have great potential in discovering many possible new particles up to the
TeV scale. The significance calculation of an observation of a physics signal with known location and shape
is no longer valid when either the location or the shape of the signal is unknown. We find the current LHC
significance calculation of new physics is over-estimated and strongly depends on the specifics of the method
and the situation it applies to. We describe general procedures for significance calculation and comparing
different search schemes. A new method uses maximum likelihood fits with floating parameters and scans
the parameter space for the best fit to the entire sample. We find that the new method is significantly
more sensitive than current method and is insensitive to the exact location of the new physics signal we search.

1 Introduction

The Large Hadron Collider (LHC) at CERN will open a
new frontier in particle physics due to its higher collision
energy and luminosity as compared to the existing acceler-
ators. The general-purpose ATLAS and CMS experiments
at the LHC will employ precision tracking, calorimetry and
muon measurements over a large solid angle to identify and
measure electrons, muons, photons, jets and missing energy
accurately. Therefore, they have great physics potential in
discovering many possible new particles. Among them are
the Standard Model (SM) Higgs boson, supersymmetric
(SUSY) and other new particles beyond the SM. All of
them can have masses in a very large range up to the TeV
scale. The significance calculation in searching for and ob-
servation of a physics signal with known location and shape
is no longer valid when either the location or the shape of
the signal is unknown. This will be the case for many of
the possible new physics signals at the LHC.

In Sect. 2, we give a short review of the significance
calculation and current analysis strategy in High Energy
Physics (HEP) and at the LHC. Using a signal with known
shape but unknown location as an example, we discuss in
detail in Sect. 3 the problems of the current significance
calculation. We then describe general procedures for signif-
icance calculation and comparing different search schemes
in Sect. 4. In Sect. 5, we describe a new analysis method and
compare it with the current “Sliding-Window” approaches
following these procedures. Detailed comparison results are
also given in this Section. Summary anddiscussion are given
in Sect. 6. In this note we limit ourselves to the significance
calculation and analysis method used in searching for an
individual decay mode of new physics signals.

a e-mail: gao@mail.physics.smu.edu

2 Review of significance calculation
and current analysis strategy to search
for new physics at the LHC

In the field of HEP, a common strategy to detect a physics
signal is to search for an excess of events in a certain region
of a kinematic observable. The observation probability is
given by Poisson statistics:

P (n, B) =
e−BBn

n!
(1)

where B is the number of the expected events to be observed
in the region, and n is the number of the observed events
in this region. When B is large (over 25, for instance), the
significance of an observation can be approximated well by
S/

√
B of Gaussian statistics, where S = n − B.

In HEP, the significance of an observation is defined by
the probability that such an observation is due to statistical
fluctuation of background events. When we claim an obser-
vation has a significance of 5σ [1], the common criterion for
a HEP discovery, the probability that the claimed discov-
ery is due to statistical fluctuation of background events,
known as the Type I error rate in statistics, needs to be less
than 2.9× 10−7. The background fluctuation probabilities
which define the 1σ to 5σ significances in HEP are shown
in Table 1.

If the expected mass spectrum of a physics signal is a
Gaussian distribution with standard deviation σ, the mass
region used to calculate the observation significance of this
signal is usually ±2σ around the Gaussian mean. Including
regions where the physics signal has little chance to show
up only increases B and decreases S/

√
B. This is why

the region in which to search for the signal and calculate
significance is usually limited to ±2σ around the Gaussian
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Table 1. The definition of significance in HEP and the corresponding background sta-
tistical fluctuation probabilities

Significance 1σ 2σ 3σ 4σ 5σ

Probability that the observation
of the excess of events is due to 15.87% 2.28% 0.14% 3.2×10−5 2.9×10−7

background statistical fluctuation

mean, in order to maximize the discovery potential and
observation significance. This approach has been widely
and successfully used in many HEP experiments at CESR,
Tevatron, LEP, KEK-B, PEP-II, etc. It is only valid when
searching for and observation of a physics signal with known
location and shape, i.e., when the kinematic region for the
significance calculation is uniquely defined.

One of the new challenges for the ATLAS and CMS
experiments is that we do not know the masses of the new
particles we will be searching for. The current analysis
method proposed for new particle searches at the LHC
is to use a “Sliding-Window”, i.e., look for an excess of
events in a series of narrow regions or windows over the
entire available kinematic range. The location and width
of each window is given by the expectations of the new
particle with a specific mass and the corresponding width.
The expected significances and discovery potential for new
particle searches are only determined by the S and B values
within these narrow windows [2–4].

3 Problem with the current LHC search
method and significance calculation

There is a fundamental problem in the above significance
calculation. The significance of an observation is defined
according to the probability that such an observation is
due to statistical fluctuation of background events, i.e.,
the Type I error rate. The current expected significance
calculation is only correct if we know exactly the location
and shape of the new physics signal we are searching for,
and we use only one window to search and calculate the
observation significance. In the “Sliding-Window” method,
we search for an excess of events in any of the narrow
windows over a wide kinematic range, but still use the S
and B of each narrow window to calculate the significance
of the observation. Therefore, the probability of observing a
“significant” excess of events due to background statistical
fluctuation in any window will be much higher [5]. This
“false-positives” problem caused by multiple testing was
recognized in statistics many years ago [6, 7].

We use simple simulations to demonstrate this prob-
lem. Assume that we search for a possible Gaussian signal
with a standard derivation σ=1.0 but an unknown mean
between 2.0 and 98.0, and that the expected distribution
of the background is flat between 0.0 and 100.0. We gener-
ate 13,450,000 background-only Monte Carlo (MC) exper-
iments (referred to as the “background-only sample”) with
each experiment containing 500 events generated from a
flat distribution between 0.0 and 100.0.

Table 2. The probability of observing at least one “1”, “2”,
“3”, “4” and “5”σ-effect window in any background-only MC
experiment using the “Sliding-Window” method with various
step sizes

Significance “1”σ “2”σ “3”σ “4”σ “5”σ

(S/
√

B)

Step Size = 16 70.89% 20.42% 1.522% 0.11% 0.002%

Step Size = 8 91.56% 35.25% 2.818% 0.20% 0.003%

Step Size = 4 99.72% 58.53% 5.380% 0.39% 0.007%

Step Size = 2 99.99% 77.86% 9.635% 0.73% 0.015%

Step Size = 1 100.0% 89.03% 14.86% 1.24% 0.027%

Step Size = 0.5 100.0% 94.33% 19.97% 1.83% 0.042%

Step Size = 0.2 100.0% 97.17% 25.42% 2.56% 0.064%

Step Size = 0.1 100.0% 98.01% 28.21% 2.98% 0.078%

We use a “Sliding-Window” with a fixed width of 4.0
and move the center of this fixed-width window from 2.0
to 98.0 with various step sizes of 16.0, 8.0, 4.0, 2.0, 1.0,
0.5, 0.2 and 0.1, respectively to search for an excess of
events in any of the windows. The fixed width of 4.0 of
the “Sliding-Window” corresponds to ±2σ around the un-
known Gaussian mean. The significance in any one window
of a MC experiment is calculated by S/

√
B according to

the current significance calculation, where n is the number
of events in that window of the experiment, S = n − B,
and B = 20.

The probabilities that we observe at least one window
with S/

√
B > 1, 2, 3, 4, 5 (i.e. “1”, “2”, “3”, “4” and

“5”σ according to the current significance calculation) in
any of the background-only sample experiment are shown
in Table 2. This probability is defined as the number of
background-only MC experiments which contain at least
one “1”, “2”, “3”, “4” and “5”σ-effect window divided
by the total number of background-only MC experiments.
From Table 2, we can see that the probabilities of positive
observations are much higher than the Table 1 background
fluctuation probabilities that define the significances in
HEP. Furthermore, the probability of finding a signal of
given significance increases as the step size of the “Sliding-
Window” decreases, i.e., as more windows are scanned over
the same kinematic range. While each individual window
follows Poisson or Gaussian statistics reasonably well, the
probability of observing an excess in any of the multiple
windows is much higher than that for an individual win-
dow. Table 2 clearly shows the problems of the significance
calculation in searching for new physics signals with an
unknown location. It is due to the fact that we search for
an excess of events over multiple narrow windows, but the
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significance is still calculated according to an individual
narrow window.

4 Procedures for significance calculation
and comparing different analysis approaches

Each analysis approach or search scheme can be described
by two measures. The Type I error rate measures how often
false signals are claimed when there are only background
events. The significance of an observation as defined ac-
cording to this error rate is shown in Table 1. The Power
or Sensitivity measures how often real signals can be found
correctly when they are present. There is a correlation be-
tween the two measures, the Type I error rate increases
with increasing sensitivity. Therefore, we need to set one of
these two measures to the same value for different search
schemes and compare the other measure, in order to quan-
titatively compare these search schemes.

We can see from Table 2 that the “significance” calcu-
lated by S/

√
B of the “Sliding-Window” method is highly

over-estimated compared to the HEP significance defini-
tion. Furthermore, it strongly depends on the specifics of
the search scheme and the situation it applies to, i.e. step
size of the “Sliding-Window” used to scan the kinematic
range, the total range of the kinematic region, etc. We need
to evaluate the significance reported by each scheme so it
truly reflects our significance definition. The procedures to
calculate significance and compare different search schemes
are as follows:

1. Use background-only MC experiments to evaluate the
significance of all search schemes. After the evaluation,
all the search schemes should be normalized to have
the same Type I error rates, which follow the HEP
significance definition.

2. Use signal-embedded MC experiments to evaluate the
sensitivity of the search schemes. The search scheme
with the higher sensitivity is the better one.

These procedures are applied to compare a new analysis
method with the current “Sliding-Window”approaches in
the following section.

5 A new analysis method and a comparison
with the “Sliding-Window” approaches

An alternative approach is to apply an unbinned maximum
likelihood scan method with floating parameters to the
entire sample and search for the best fit to the sample over
the entire parameter space [5]. It is intended tominimize the
sensitivity of the significance to local fluctuations.We follow
the procedures described in Sect. 4 to compare the current
“Sliding-Window” approaches with this new method for
this example [8].

1. We search for a possible Gaussian signal (σ=1.0 with
unknown mean between 2.0 and 98.0) on top of a
flat background in the 13,450,000 background-only MC

experiments (“background-only sample”) using each
search scheme. We then evaluate the significance of
each scheme so that it follows the HEP significance
definition for the background-only sample.

2. We generate signal-embeddedMCexperiments and per-
form the same search using each search scheme. We then
calculate the sensitivities of finding the embedded sig-
nal for each search scheme based on the significances
defined by the background-only sample.

For the “Sliding-Window” approach in Step 1, we make
a table which defines the new cutoff values of S/

√
B which

follow the HEP significance definition for the background-
only sample. Similarly for the new approach, we find out
the values of the Maximum Likelihood fit output which
corresponds to 1, 2, 3, 4 and 5σ for the background-only
sample according to the HEP significance definition.

5.1 Significance evaluation
of “Sliding-Window” approaches

We use the background-only sample to evaluate the signif-
icance of the “Sliding-Window” approach. For each exper-
iment, we use a “Sliding-Window” with fixed width of 4
and move the center of the window from 2.0 to 98.0 with
step sizes of 16, 8, 4, 2, 1, 0.5, 0.2 and 0.1, respectively,
to search for the window with the maximum S/

√
B. For

each step size, we plot the maximum S/
√

B for all the
background-only sample. We then find the corresponding
cutoff values on the plot which follow the HEP signifi-
cance definition. For example, the maximum S/

√
B from

“Sliding-Window” approaches with step sizes of 16, 4, 1,
and 0.1 for the background-only sample are shown in Fig. 1.
In the “Sliding-Window” approach with step size of 0.1,
we find that 15.87% of the experiments have at least one
window with S/

√
B > 3.35, and 2.28% of the experiments

have at least one window with S/
√

B > 4.02. According to
our HEP significance definition in Table 1, the experiments
which contain windows with S/

√
B > 3.35 are defined as

1σ for the “Sliding-Window” approach with step size of
0.1 in this case. Similarly, the experiments which contain
window with S/

√
B > 4.02 are defined as 2σ. The new

S/
√

B cutoff values which follow our HEP significances
definition for the “Sliding-Window” approaches with var-
ious step sizes are given in Table 3. The cutoff values are
not continuous, because S = n − B, B = 20, and both n
and S are integers.

5.2 Significance evaluation of the new analysis method

We use the same background-only sample to evaluate the
significance for the new approach. In this specific example
we search for a Gaussian signal (σ=1.0 with unknown mean
between 2.0 and 98.0) on top of a uniform background. The
Likelihood is then calculated as:

L(Y |µ) =
n∏

i=1

P (yi|µ) (2)
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Fig. 1. The maximum S/
√

B from “Sliding-
Window” approaches with step sizes of 16,
4, 1, and 0.1 for the 13,450,000 background-
only MC experiments

Table 3. The S/
√

B cutoff values which correspond to the
HEP significance definition for a “Sliding-Window” approach
with different step sizes

Significance 1σ 2σ 3σ 4σ 5σ

Step Size = 16 2.01 2.90 3.80 4.91 6.03

Step Size = 8 2.23 3.13 4.02 5.14 6.26

Step Size = 4 2.68 3.35 4.24 5.36 6.48

Step Size = 2 2.90 3.57 4.47 5.36 6.48

Step Size = 1 2.90 3.80 4.47 5.59 6.48

Step Size = 0.5 3.13 3.80 4.69 5.81 6.93

Step Size = 0.2 3.13 4.02 4.91 5.81 6.93

Step Size = 0.1 3.35 4.02 4.91 5.81 6.93

where the Y are the data per experiment, and yi is the
individual data point in each experiment where i = 1, 2,
3,. . . , n (n = 500). P (yi|µ) is the normalized probability
density of yi as a function of the parameter µ which is
the unknown mean of the Gaussian signal. The normalized
probability density is given by:

P (yi|µ) =
(1 − p)

100
+

p√
2π

e− 1
2 (yi−µ)2 (3)

where 100 is the normalization factor which guarantees that
the integral of P (yi|µ) over the range from 0.0 to 100.0 is
equal to 1. p is the probability of the data point being

the Gaussian signal. Similarly, (1 − p) is the probability
of the data point being the background. The optimization
process attempts to find the µ parameter that maximizes
L(Y |µ) for each experiment, or minimizes −log(L(Y |µ)).
We use

500∑

i=1

log((1 − p) + p
100√
2π

e− 1
2 (yi−µ)2) (4)

as the maximum likelihood output to simplify the calcu-
lation.

For the MC experiment generation and maximum like-
lihood analysis we used the statistical computing software
R [9, 10]. R is a language and environment for statistical
computing and graphics. It is a GNU project developed at
Bell Laboratories and provides a wide variety of statistical
and graphical techniques (linear and nonlinear modeling,
classical statistical tests, time-series analysis, classification,
clustering, etc.) [11]. We have also tried other statistical
software packages such as SAS [12], Matlab [13] and the
HEP software package RooFit [14] to generate the MC ex-
periments, and perform the maximum likelihood fits. The
results with different analysis tools are all consistent. We
decided to use R because it is faster than the other packages.

In order to find the best fit with a floating µ parameter
for each experiment, we break down the µ parameter region
from 2.0 to 98.0 into 96 equal intervals [15]. We perform
one maximum likelihood fit for each interval to find the
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Fig. 2. The Maximum Likelihood output for 13,450,000
background-only MC experiments. The top plot is in linear
scale while the bottom plot is in log scale

Table 4. The cutoff values of the maximum likelihood output
for the new analysis method in this example

Fraction of background-only Cutoff value Significance
experiments below cutoff
84.13% 4.00 1σ

97.72% 5.94 2σ

99.86% 8.71 3σ

99.9968% 12.48 4σ

(1 − 2.9 × 10−5)% 16.61 5σ

best fit. We then compare all 96 fits to find the overall best
fit for the entire µ parameter space for this experiment.
The maximum likelihood output of the best fit for the
background-only sample is shown in Fig. 2. Because 84.13%
of the background-only MC experiments have a maximum
likelihood output below 4.00, the cutoff value for 1σ is set
at 4.00. Similarly, 5.94 is set as the cutoff value for 2σ. The
cutoff values for 1 to 5σ significances for the new analysis
method in this example are given in Table 4.

After these evaluations, the significances reported by
the “Sliding-Window” approaches and the new analysis
method are all adjusted to follow the HEP significance
definition for background-only sample. We can then com-
pare the sensitivity of these approaches using the signal-
embedded MC experiments.

5.3 Sensitivity comparison of “Sliding-Window”
approaches with the new analysis method

We generate signal-embedded MC experiments to calcu-
late the Power or Sensitivity of each approach. Each ex-
periment contains a small number (5, 10, 15, 20, 25, 30,

and 35) of signal events generated according to a Gaus-
sian distribution with σ=1.0 and a specific Gaussian mean
(42.00, 46.00, 48.00, 49.00, 49.50, 49.75, 49.90, 49.95, and
50.00) [8]. Each signal-embedded experiment contains one
set of these signal events embedded with 500 background
events generated with a flat distribution between 0.0 and
100.0. A total of 630,000 signal-embedded MC experiments
are generated, with 10,000 experiments for each set of Gaus-
sian signal parameters. For example, 10,000 experiments
each with 5 Gaussian signal events with Gaussian mean at
42.00 embedded into 500 background events are generated.
The maximum likelihood output for each signal-embedded
experiment is normalized to 500 events before comparing
with the cutoff values from background-only experiments.

We use these signal-embedded experiments to calcu-
late the sensitivity of the “Sliding-Window” approaches.
We use a “Sliding-Window” of fixed width of 4.0 and move
the center of this fixed-width window from 2.0 to 98.0 with
various step sizes of 16.0, 8.0, 4.0, 2.0, 1.0, 0.5, 0.2 and
0.1, respectively, to search for the window with the max-
imum S/

√
B for each experiment. The success of finding

the embedded signal in an experiment is defined as when
the center of the most significant window is found within
1.0 of the Gaussian mean of the embedded signal events.
The significance of this window is defined according to the
cutoff values in Table 3.

We use the same signal-embedded experiments to cal-
culate the sensitivity of the new analysis method. For each
experiment, we break down the µ parameter region from
2.0 to 98.0 into 96 equal intervals. We perform one max-
imum likelihood fit for each interval to find the best fit
for this interval and the corresponding µ value. We then
compare all 96 fits to find the best overall fit for the entire
µ parameter space and its corresponding µ value for each
experiment. The success of finding the embedded signal in
an experiment is defined as when the µ value of the best
fit in the entire µ parameter space falls within 1.0 of the
Gaussian mean of the embedded signal events. Similarly,
the significance is defined according to the cutoff values
in Table 4.

The sensitivity of the “Sliding-Window” approaches
with various step sizes is very sensitive to the exact value
of the Gaussian mean of the embedded signal events. There-
fore, we choose the best-case and worst-case scenarios for
each “Sliding-Window” approach with a specific step size.
The best-case scenario corresponds to a case where the ±2σ
region of the embedded Gaussian signal falls exactly in-
side one of the “Sliding-Windows”. The worst-case scenario
corresponds to a case when the embedded Gaussian signal
falls exactly between two neighboring “Sliding-Windows”.
In Table 5, we show the Gaussian means of the embedded
Gaussian signals for the best-case and worst-case scenarios
for various “Sliding-Window” step sizes.

For each set of the 10,000 signal-embedded MC experi-
ments, we calculate how many times the embedded signals
are correctly found by each approach with a significance
greater than 1, 2, 3, 4 and 5σ according to the HEP signifi-
cance definitions. For the “Sliding-Window” approach with
a specific step size, two numbers are reported, according
to the best-case and worst-case scenarios respectively. In
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Table 5. The Gaussian means of the embedded Gaussian sig-
nal for the best-case and worse-case scenarios of the “Sliding-
Window” approaches with various step sizes

Step Size Gaussian Mean of embedded signal
Best-Case Scenario Worst-Case Scenario

16 50.00 42.00
8 50.00 46.00
4 50.00 48.00
2 50.00 49.00
1 50.00 49.50
0.5 50.00 49.75
0.2 50.00 49.90
0.1 50.00 49.95

contrast, the new approach scans the parameter space and
performs a maximum likelihood fit at each small interval
to cover the entire parameter space to search for the best
fit of the entire sample. Thus, it is not sensitive to the exact
value of the Gaussian mean of the embedded signal. We
find the number is independent of the exact location of the
embedded Gaussian signal for the new analysis method.

The work and results for 5, 10, 15, 20, 25, 30, and 35 sig-
nal events embedded with Gaussian means at 42.00, 46.00,

48.00, 49.00, 49.50, 49.75, 49.90, and 50.00 are shown in [8].
The results for 10, 20, and 30 signal events embedded are
shown in Tables 6, 7, and 8. We can see that the number
of signal embedded experiments successfully found with a
certain significance is much lower than what expected from
S/

√
B calculations. This is a price we have to pay for not

knowing the exact location of the signal. Furthermore, for
the “Sliding-Window” method, the sensitivity strongly de-
pends on the exact location of the embedded signal. If the
step size is greater than 1, the embedded signals are totally
missed for the worst-case scenarios. For step size of 1 or
less, there are still significant differences in the sensitivities
between the best-case and worse-case scenarios, depends
on the step size of the “Sliding-Window” used to scan the
kinematic range. In comparison, the new analysis method
is independent of the exact location of the Gaussian mean
of the embedded signal events. This is because the new
method scans the entire parameter space for the best fit to
the entire experiment. The maximum S/

√
B from “Sliding-

Window” approaches with step sizes of 16, 4, 1, and 0.1 for
the best-case scenario MC experiments each with 20 signal
events embedded are shown in Fig. 3. Similarly, the maxi-
mum S/

√
B from “Sliding-Window” approaches with step

sizes of 16, 4, 1, and 0.1 for the worst-case scenario MC ex-
periments each with 20 signal events embedded are shown
in Fig. 4. The maximum likelihood output of the best fits

Table 6. The number of signal embedded experiments successfully found with 1, 2, 3, 4
and 5σ significance in the 10,000 MC experiments each with 10 signal events embedded.

Significance 1σ 2σ 3σ 4σ 5σ

Scenario Best/Worst Best/Worst Best/Worst Best/Worst Best/Worst

Step Size = 16 4795/0 1859/0 433/0 39/0 1/0
Step Size = 8 3897/0 947/0 271/0 23/0 1/0
Step Size = 4 1839/0 652/0 176/0 16/0 1/0
Step Size = 2 1691/0 619/0 107/0 16/0 1/0
Step Size = 1 1915/1031 537/274 143/68 9/1 1/0
Step Size = 0.5 2011/1728 807/706 156/120 11/2 2/0
Step Size = 0.2 2011/1728 562/484 97/70 11/2 2/0
Step Size = 0.1 1598/1465 599/548 106/78 13/2 1/0
New Approach 2328 819 153 17 2

Table 7. The number of signal embedded experiments successfully found with 1, 2, 3, 4
and 5σ significance in the 10,000 MC experiments each with 20 signal events embedded.

Significance 1σ 2σ 3σ 4σ 5σ

Scenario Best/Worst Best/Worst Best/Worst Best/Worst Best/Worst

Step Size = 16 9834/0 8969/0 6302/0 2215/0 356/0
Step Size = 8 9694/0 7844/0 5435/0 1616/0 240/0
Step Size = 4 8932/0 7135/0 4542/0 1190/0 158/0
Step Size = 2 8439/0 6867/0 3642/0 1182/0 156/0
Step Size = 1 8086/4955 6365/3913 4032/2509 965/634 174/112
Step Size = 0.5 7795/7264 6812/6273 4020/3782 1046/965 130/100
Step Size = 0.2 7795/7264 6217/5747 3274/3061 1046/965 130/100
Step Size = 0.1 7538/7277 6314/6034 3416/3268 1119/1051 149/111
New Approach 9116 7406 4073 1209 206
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Table 8. The number of signal embedded experiments successfully found with 1, 2, 3, 4
and 5σ significance in the 10,000 MC experiments each with 30 signal events embedded

Significance 1σ 2σ 3σ 4σ 5σ

Scenario Best/Worst Best/Worst Best/Worst Best/Worst Best/Worst

Step Size = 16 10000/0 10000/0 9963/0 9215/0 5936/0
Step Size = 8 10000/0 9993/0 9917/0 8792/0 5079/0
Step Size = 4 9998/0 9987/0 9841/0 8249/0 4238/0
Step Size = 2 9904/0 9886/0 9633/0 8210/0 4232/0
Step Size = 1 9542/6589 9532/6584 9412/6490 7787/5444 4560/3285
Step Size = 0.5 9249/8784 9246/8781 9152/8665 7743/7331 3847/3683
Step Size = 0.2 9249/8784 9238/8778 9046/8558 7743/7331 3847/3683
Step Size = 0.1 9183/8945 9178/8934 9006/8742 7792/7603 4049/3944
New Approach 9985 9974 9723 8024 4332

Fig. 3. The maximum S/
√

B from
“Sliding-Window” approaches with step
sizes of 16, 4, 1, and 0.1 for the best-case
scenario 10,000 MC experiments each
with 20 signal events embedded

for MC experiments with 5, 10, 20 and 30 signal embed-
ded are shown in Fig. 5. Compared to “Sliding-Window”
approaches with a step size small enough not to miss the
worst-case scenarios, the sensitivity of the new analysis
method is significantly higher. This means that the new
analysis approach is a significantly better and more sensi-
tive scheme to search for new physics signals at the LHC
than the current “Sliding-Window” method.

The analysis method described above performs a scan
of the entire parameter space using unbinned maximum
likelihoodfits at every small interval of the parameter space.
It is very CPU-intensive. The 13.45 million background-

only and 630,000 signal embedded MC experiments were
generated and analyzed over several months with about 10
dual-CPU servers.

6 Summary and discussion

We have examined the significance calculation and analy-
sis methods in searching for an individual decay mode of
a new physics signal at the LHC. Unlike the search for a
physics signal with known location and shape, the signif-
icance calculation for new physics signals with unknown
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Fig. 4. The maximum S/
√

B from
“Sliding-Window” approaches with step
sizes of 16, 4, 1, and 0.1 for the worst-case
scenario 10,000 MC experiments each
with 20 signal events embedded

Fig. 5. The maximum likelihood output
for MC experiments with 5, 10, 20, 30
signal events embedded respectively
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location or shape strongly depends on the details of the
search scheme and the situation it applies to. Using a signal
with known shape but unknown location as an example,
we have demonstrated that the significance calculation us-
ing the current “Sliding-Window” method at the LHC is
over-estimated. This is because we search for an excess
of events over multiple narrow windows, but the signifi-
cance is still calculated according to an individual narrow
window. The significance and sensitivity of the “Sliding-
Window” method strongly depends on the specifics of the
method and the situation it applies to, e.g. the step size
of the “Sliding-Window” used to scan the available kine-
matic range, the total available kinematic range to search
for the new physics signal, and the exact location of the
new physics signal, etc.

We describe general procedures for significance calcu-
lation and comparing different search schemes. We have
applied the procedures and compared the current “Sliding-
Window” approaches with a new analysis method. The
proposed new analysis method uses maximum likelihood
fits with floating parameters and scans the parameter space
for the best fit to the entire sample. We find the results of
the new analysis method is independent of the location of
the new physics signal and significantly more sensitive in
searching for new physics signal than the current “Sliding-
Window” approaches.

While the LHC experiments have great potential in
discovering many possible new physics signals, we need to
be extremely careful in evaluating the significance of an
observation from the real LHC data. Because possible new
physics can show up in many kinematic observables, over
a very large kinematic range, the fluctuation probability
of background events will be much higher. For individual
decay modes of new physics signals, the expected signif-
icances in observing the new physics signal will be much
smaller than current expectations [2–4]. Combining inde-
pendent decay modes of the same new physics signal will
be essential to establish the discovery of the new physics
signal. Significant observations of the same new particle
in independent decay modes at consistent locations will
be the most effective way to establish the discovery of this
new particle. Careful evaluation of the observation signifi-
cance in each individual decay mode following the general

procedures described in this paper is the starting point,
before we can evaluate the significance of the observations
of independent decay modes.
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